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ABSTRACT 
 
In this paper, we present the Prophesy Automatic 
Instrumentation and Data Entry (PAIDE) system and 
describe its design framework and implementation 
supporting C, Fortran77 and Fortran90 programs on 
diverse systems. We use NAS Conjugate Gradient (CG) 
and Integer Sort (IS) benchmarks to analyze the PAIDE’s 
instrumentation overheads for two granularities of 
instrumentation with increasing number of processors and 
problem size. The experimental results on the SGI 
Origin2000 show that the instrumentation overhead for 
CG benchmarks is less than 3.4%, while that for parallel 
IS benchmarks is less than 1%. This is significant and it 
indicates that the PAIDE system does not perturb the 
performance data. The PAIDE system is able to capture 
performance information on repeated events as sequential 
events and is appropriate for parallel and distributed 
applications that take a long time to execute. 
 
KEYWORDS: Source-code-level instrumentation, 
automatic instrumentation, performance database, 
performance data collection and entry. 
 
 
1. INTRODUCTION 
 
Traditionally, to tune algorithm implementations for best 
performance, detailed performance data must be gathered 
during actual executions of a program on a given target 
architecture. Instrumentation is the mechanism used to 
gather data from the executing program. Software 
instrumentation involves the placement of small pieces of 
code in a compiler, a parallel communication library, an 
application program, or even the linked executable. The 
function of this code, referred to as an event code, is to 
report some values to the components responsible for 
aggregating the event data. The level at which the 
instrumentation is placed determines the types of displays 
which can be created. This paper presents the Prophesy 
Automatic Instrumentation and Data Entry (PAIDE) 
system, for which the goals are minimize instrumentation 

overhead and collect enough performance data so as to 
generate detailed performance models. 
    A way to implement an instrumentation system entails 
modifying an application source code before compile-
time to insert calls to collect performance data. The 
instrumentation of an application source code can provide 
information about abstract high-level events and 
constructs within the source code. For example, Pablo 
[10] and SvPablo [11] compose an automatic/interactive 
instrumentation system. They use a preprocessor 
(SvPabloParser) to read the source code in order to 
produce an annotated source code with instrumentation 
calls. Another approach is to directly instrument the 
application source code during the compile time. For 
example, CONVEX [5] uses a modified compiler to insert 
instrumentation at the desired location. This provides 
access to information that is only available to compilers, 
such as data and loop dependencies, etc. 
    Instrumentation of the parallel communication libraries 
provides an easy way to collect data about the interactions 
between processes. It can provide trace information 
consisting of send and receive events as well as 
computation and communication statistics. An advantage 
of this approach is that it does not require the 
programmers to modify their programs, just re-link them 
with special flags. For example, IPS-2 [9] does not 
require any modifications of the user's program; its 
instrumentation is automatically inserted at compile/link 
time. The MPI Standard (Message Passing Interface) [3] 
specifies a standard profiling interface that allows tool 
developers to easily attach their instrumentation 
instructions without the need to have access to the MPI 
source code [3, 6]. For PVM (Parallel Virtual Machine) 
library [2], the trace data is generated by instrumented 
versions of the PVM routines. The instrumented routines, 
apart from performing the application message 
operations, use PVM to send event tracing messages to a 
monitoring process. Another approach is to use binary 
rewriting technique to directly insert instrumentation into 
the executable image. For example, MTOOL [4] uses the 
technique. The binary instrumentation permits data 
collected in a language-independent way, and makes it 



easy to collect information about the parallel 
communication libraries in the same way that application 
data is collected. It does not require any source code. 
Paradyn [7, 8] uses dynamic instrumentation technique to 
modify an executable’s instructions to generate 
performance data. It does not require any source code yet. 

 
Figure 1. Prophesy framework 

 
    The Prophesy system [13, 12] is an infrastructure for 
analyzing and modeling the performance of parallel and 
distributed applications. It targets a number of 
programming models, languages and architectures. The 
Prophesy system framework consists of three major 
components: data collection, data analysis, and three 
central databases, as illustrated in Figure 1. The data 
collection component focuses on the automatic 
instrumentation and application code analysis at the level: 
basic blocks, procedures, or functions. The entire code 
can be instrumented at the basic block level such that a 
significant amount of performance information can be 
gathered to gain insight into the performance relationship 
between the application and hardware and between the 
application, compilers, and run-time systems. The 
resultant performance data will be stored in the 
performance database organized by basic blocks, 
functions, and modules. The data analysis component can 
produce an analytical performance model with 
coefficients, at the granularity specified by the user. The 
models are developed based upon performance data from 
the performance database, model templates from the 
template database, and system characteristics from the 
systems database. An application goes through three 
stages (instrumentation of the application, performance 
data collection of many runs, and model development 

using optimization techniques) to generate an analytical 
performance model. Prophesy system allows for the 
development of linear as well as nonlinear models. These 
models, when combined with data from the system 
database, can be used by the prediction engine to predict 
the performance on a different compute platform.  
    The use of databases with Prophesy system allows 
users to explore the performance models developed for 
different kernels, applications and systems. The data in 
the databases are organized in a hierarchical manner, 
allowing for the development of analytical models of 
different granularities. Prophesy system is an 
infrastructure designed to explore the plausibility and 
credibility of various techniques in performance 
evaluation (such as scalability, efficiency, speedup, 
performance coupling between application kernels, etc.) 
and allow users to use various metrics collectively to 
bring performance analysis environments to the most 
advanced level. The Prophesy interface uses web 
technology to enable users from anywhere to access the 
performance data, add performance data, or utilize the 
automated instrumentation and modeling processes.  
    The PAIDE system is the data collection component of 
Prophesy system, with the goal of minimizing 
instrumentation overhead and code. The PAIDE inserts 
minimal instrumentation into the source code to identify 
high-level problems such as too much synchronization 
blocking and to generate high-level detailed performance 
models. The PAIDE system is able to capture information 
on repeated as well as single events; information is 
collected to generate first and second order statistics on 
the various code segments. There is no I/O during the 
execution; only one I/O write is completed at the end of 
the execution. Tools such as SvPablo [11] etc. that require 
I/O during execution result in significant overhead.  It was 
determined that such tools can result overhead for the 
NAS Conjugate Gradient (CG) and Integer Sort (IS) 
benchmarks [1] of 30% or more.  In contrast, the PAIDE 
system resulted in overheads of less than 3.4% for CG 
and less than 1% for parallel IS. This is significant and 
indicates that the PAIDE does not perturb the 
performance data. 
    The rest of this paper is organized as follows. Section 2 
presents the detailed design framework of the PAIDE 
system and its implementation. Section 3 uses NAS CG 
and IS benchmarks to do performance analysis and 
comparison. Section 4 summaries the paper. 
 
2. FRAMEWORK OF THE PAIDE 
SYSTEM 
 
The PAIDE provides a way to do automatic 
instrumentation for Fortran77, Fortran90, and C 
programs. Its basic organization is illustrated in Figure 2.  
The Parser shown in Figure 2 entails inserting some 
instrumentation codes to a source file. It provides the 
following options: 
-ALL:    Instrumenting all procedures and outer loops 
-PROC: Instrumenting all procedures 



-NOP:    Instrumenting all procedures not nested in loops 
-LOOP: Instrumenting all loops 
-FTP:  Using anonymous ftp to automatically transfer 

some required files to the Prophesy server 
    While a source code is instrumented via the Parser, its 
performance relation file and call graph file are also 
generated. If the Parser with “-FTP” option is used, the 
two files are automatically sent to the Prophesy server via 
anonymous ftp for entry into the Prophesy database. The 
performance relation file is generated according to event 
ID order. For each event, the event information includes: 
event ID, event start line number, event end line number, 
procedure name, caller name, caller file (module name). 
The Call graph shows the call graph relations for source 
codes. The instrumented source code can be compiled to 
generate an instrumented executable. At the end of the 
program execution, each process generates a per-process 
performance file. The performance files, one for each 
processor are automatically sent to the Prophesy server 
via anonymously ftp. Then, the corresponding Perl CGI 
scripts are used to automatically put the data into 
Prophesy database via Prophesy web interface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 2. Basic organization of the PAIDE system 
 
    To achieve our goal of minimal instrumentation code, 
the PAIDE generates statistics in-line for coarse-grain as 
well as fine-grain computation. The details of the 
instrumentation code are described as follows. 
 
 

2.1 Performance Data 

Basically, parallel computing involves three types: 
computation, communication and I/O. For computation, 
its metrics of interest may be count and duration. 
Communication includes send (source) and receive 
(destination) operations. For send (source) operation, its 
metrics of interest may be count, start time, duration and 
message size. For receive (destination) operations, its 
metrics of interest may be duration and message size. 
Communication includes the communication between 
processors, or between processor and memory etc. For I/O 
operation, its metrics of interest may be count, duration 
and data size. The PAIDE collects data on all three types. 
Further, performance statistics are collected for different 
levels of granularities. Since a basic unit can be accessed 
from multiple functions, statistics are collected at the 
levels of both the function and basic unit.  The basic unit 
and function statistics are differentiated by access.  This is 
accomplished by keeping up with the calling routine and 
associating a different event identifier with the calling 
routine.  For example if function C is called by functions 
A and B, the execution of function C has two event 
identifiers, one for each of the two functions A and B. 
    Based on the analysis as above, we insert the following 
types of instrumentation codes: counter, timer and square 
of each timer. The counter and timer are used to generate 
the mean of the execution times. The square of each timer 
is used to generate the standard deviation. Generally, 
counters count the frequency of an event while timers 
measure the time spent using a resource of the system. 
Counter and timer instructions can be inserted at 
appropriate locations in the application program by the 
PAIDE system.  
    In Figure 2, when a source code is instrumented via the 
Parser, the Parser counts each procedure and loop in the 
source code, and labels it with a unique instrumentation 
point number (or called event identifier). The basic 
PAIDE instrumentation structure is defined as follows: 
 
struct PAIDE { 

long count;       /* call count */ 
double runtime;       /* duration */ 

 double psqrtime;       /* sum of square of duration */ 
}; 
struct PAIDE celero[Total number of instrumentation points]; 
     

2.2 Automatic Instrumentation 

The PAIDE provides multiple instrumentation options 
described as above so that the user can choose to 
instrument only procedures or loops, the procedures not 
nested in loops and outer loops, or all procedures and 
outer loops. The user also can select the source files to be 
instrumented. But the main file containing the “main()” 
function for a C program or the “PROGRAM” subroutine 
for a Fortran program must be instrumented. The default 
instrumentation option is to instrument all procedures and 
all loops for all source files.  

Source code 
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Instrumented source code 

Compiler 

Instrumented executable 

Performance files 

Prophesy Database 
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    The PAIDE takes a source code to generate the 
corresponding instrumented file. If the source code 
contains the main routine, it renames the C main function 
to “_Prophesy_main_()”, or changes the Fortran main 
routine PROGRAM to SUBROUTINE. It also generates 
an extra initial main file “XX_init.c” containing a new 
“main()”. In the instrumented Fortran code, the original 
main routine like “PROGRAM NAME” is substituted 
with “SUBROUTINE NAME” and “XX_init.c” contains 
a call to NAME_ or NAME (based on different C/Fortran 
call interfaces). Note that, in Fortran90, the module/array 
has the same syntax as function calls like YY(…). If 
instrumenting the function calls is allowed, the PAIDE 
will automatically instrument all the function calls plus 
the data structures with form of YY(…). If the program is 
large, and has a lot of modules, there will be a lot of code 
unnecessarily instrumented. Therefore, for Fotran77 and 
Fortran90 programs, the PAIDE only instrument 
subroutines. In the instrumented C code, the original main 
function “main()” is replaced with “_Prophesy_main_()”, 
and “XX_init.c” contains a call to “_Prophesy_main_()”. 
    For example, given NAS Parallel IS benchmark “is.c”, 
after it is instrumented, the following files are generated: 
the initial main file “is_init.c”, the instrumented source 
code “is_inst.c”, the performance relation file 
“eventlist.is”, and the call graph file “callgraph.is”. An 
example of the in-line instrumentation code is given 
below: 
 
/*  This is the main iteration of is.c */ 
#line 952 "Instrumentation code" 
prophesytime = gettimeofday( &begin_time[62], (void *)0 ); 
#line 952 "is.c" 
for( iteration=1; iteration<=10; iteration++ )  
   
    { 
        if( my_rank == 0 && 'A' != 'S' ) 
#line 954 "Instrumentation code" 
( prophesytime = gettimeofday( &begin_time[60], (void *)0 ),   
_printf_ReturnValue_ = 
#line 954 "is.c" 

printf( "        %d\n", iteration )  
   
#line 954 "Instrumentation code" 
, prophesytime = gettimeofday( &exit_time, (void *)0 ), 
prophesyruntime = exit_time.tv_sec - begin_time[60].tv_sec, 
prophesyruntime += ( (double)( exit_time.tv_usec -  
begin_time[60].tv_usec ) / 1000 
000.0 ), 
celero[60].runtime += prophesyruntime, 
celero[60].psqrtime += prophesyruntime * prophesyruntime, 
celero[60].count ++ 
, _printf_ReturnValue_) 
#line 954 "is.c" 
; 
 
#line 955 "Instrumentation code" 
( prophesytime = gettimeofday( &begin_time[61], (void *)0 ), 
#line 955 "is.c" 

rank( iteration )     
#line 955 "Instrumentation code" 
, prophesytime = gettimeofday( &exit_time, (void *)0 ), 

prophesyruntime = exit_time.tv_sec - begin_time[61].tv_sec, 
prophesyruntime += ( (double)( exit_time.tv_usec -  
begin_time[61].tv_usec ) / 1000 
000.0 ), 
celero[61].runtime += prophesyruntime, 
celero[61].psqrtime += prophesyruntime * prophesyruntime, 
celero[61].count ++ 
) 
#line 955 "is.c" 
; 
    } 
#line 956 "Instrumentation code"   
   
prophesytime = gettimeofday( &exit_time, (void *)0 ); 
prophesyruntime = exit_time.tv_sec - begin_time[62].tv_sec; 
prophesyruntime += ( (double)( exit_time.tv_usec -  
begin_time[62].tv_usec ) / 1000 
000.0 ); 
celero[62].runtime += prophesyruntime; 
celero[62].psqrtime += prophesyruntime * prophesyruntime; 
celero[62].count ++; 
 
#line 956 "is.c" 
 
    This instrumentation is for all procedures and the outer 
loop to illustrate the instrumentation statement added to 
an application source code. For the main for-loop, its 
eventID is 62. Its instrumentation initializes the timer to 
measure the loop duration. At the end of the outer loop, it 
computes the duration of the loop and increments its 
timer, square of timer, and counter. For the function 
rank(), its eventID is 61. Its instrumentation code is 
similar to that for the outer loop as above. 
 
3. CASE STUDIES: PERFORMANCE 
ANALYSIS AND COMPARISON 
 
In this section, we use NAS CG and IS benchmarks to test 
the PAIDE system. For the serial CG benchmarks, we 
analyze the instrumentation overheads for two cases, Case 
I and Case II.  Case I consists of instrumentation for 
procedures and outer loops and Case II consists of 
instrumentation for all procedures (that include the 
procedures in loops.) and outer loops.  We analyze the 
two cases for different problem sizes and different 
number of processors.  The following experimental results 
are obtained from SGI origin 2000. The SGI Origin2000 
is in the Center for Parallel and Distributed Computing at 
Northwestern University. It is an eight-way symmetric 
multiprocessor. Each processor is a 64-bit chip running at 
195 MHz capable of 390 Mflops (2 flops per cycle). The 
total main memory is 1GB. 
 
3.1 NAS CG Benchmarks (Fortran version) 

The NAS CG Benchmark [1] is an iterative algorithm for 
solving a linear system of equations, for which the linear 
system is represented as a sparse matrix. Table 1 shows 
the matrix orders and the number of iterations for problem 
size S, W, A and B. 



Table 1. Number of iterations and serial execution times 
for problem size S, W, A and B 

Problem size Class S Class W Class 
A 

Class B 

Matrix order 1400 7000 14000 75000 
No. Iterations 15 15 15 75 
Original 0.86 10.89 47.41 2529.41 
Case I 0.87 11.18 47.96 2538.53 
Case II 0.88 11.27 48.04 2581.70 

 
3.1.1 Serial NAS CG benchmark 
 
With increasing the problem size from S to B, Table 1 
shows the execution times of the original CG program, 
the instrumented program in Cases I and II for different 
problem sizes. Case I involves 33 instrumentation events, 
and Case II involves 39 instrumentation events. Table 2 
shows the percent of the instrumentation overhead with 
increasing the problem size.  The results indicate that the 
overhead is less than 3.4% in all cases.  Further, for the 
large problem size with a large number of iterations, 
indicating a large number of times the PAIDE 
instrumentation code is executed, the overhead is less 
than 3%. 

Table 2. Percent of Instrumentation overhead 
perturbation for serial CG 

Problem size Class S Class W Class A Class B 
Case I 1.15% 2.59% 1.15% 0.36% 
Case II 2.27% 3.37% 1.31% 2.03% 
 
3.1.2 Parallel NAS CG Benchmark with Class A 
 
For the parallel CG benchmark with Class A for the 
problem size, Case I involves 48 instrumentation events, 
and Case II involves 82 instrumentation events. Figure 3 
shows the execution times of the original CG program 
and the two cases with increasing number of processors 
from one to eight processors. The corresponding 
percentages are given in Table 3. The results also 
illustrate the overhead to be less than 3.4%, which is 
consistent with the sequential case. 
 
Table 3. Percent of Instrumentation overhead for parallel 

CG with Class A 
 

Processors 1 2 4 8 
Case I 1.15% 1.27% 2.01% 1.91% 
Case II 1.31% 2.14% 3.22% 3.15% 

 
Table 4. Percent of instrumentation overhead perturbation 

for parallel IS with Class B 
 

Processors 1 2 4 8 
Case I 4.90% 0.43% 0.43% 0.22% 
Case II 5.45% 0.44% 0.68% 0.81% 

3.2 NAS Parallel IS Benchmarks (C version) 

The IS benchmark [1] is parallel sort over small integers. 
It sorts N keys in parallel. The keys are generated by the 
sequential key generation algorithm and initially must be 
uniformly distributed in memory. Notice that the initial 
distribution of the keys can have a great impact on the 
performance of the benchmark.  
    For the parallel IS benchmark with Class B, it sorts 225 
keys in parallel. Case I involves 45 instrumentation 
events, and Case II involves 52 instrumentation events. 
Figure 4 shows the execution times of the original 
program, the instrumented program for the two cases with 
different number of processors. Table 4 shows the percent 
of the instrumentation overhead with increasing the 
number of processors. Again the percents are low and 
highly dependent on the initial distribution of memory. 

0

10

20

30

40

50

60

0 2 4 6 8 10

Number of Processors

E
xe

cu
ti

o
n

 T
im

e 
(s

)

Original

Case I

Case II

Figure 3. Execution times for parallel CG with Class A 
 

 

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10

Number of Processors

E
xe

cu
ti

o
n

 T
im

e 
(s

)

Original

Case I

Case II

Figure 4. Execution times for parallel IS with Class B 
     



    In Table 3 and 4, the percent of the instrumentation 
overhead for each parallel execution is less than 3.4%. 
Especially, for the parallel IS benchmark with the large 
problem size Class B, the percent of the instrumentation 
overhead is less than 1%. The two case studies show that 
we basically meet the goal of the PAIDE: the minimal 
instrumentation overhead and code, and minimal 
perturbation of application programs. The PAIDE system 
is practical and more appropriate for parallel and 
distributed applications. 
 
4. SUMMARY 
 
In this paper, we present the design and implementation 
of the PAIDE system, for which the goal is to minimize 
instrumentation overhead or perturbation. The PAIDE 
automatically instruments application by inserting code to 
generate in-line first and second order statistics about the 
code segment. No I/O operations occur during the 
execution of the application; the PAIDE requires only one 
I/O write operation that occurs at the end of execution of 
each process. In addition to instrumenting the application, 
the PAIDE generates an events file (that maps the event 
identifiers with the lines of code in the application) and a 
control flow file.  Further, unique identifiers are used to 
distinguish performance statistics for functions or routines 
that call similar code segments. The performance data can 
be used to generate models and aid with identifying 
bottlenecks and developing more efficient codes.   
    The experimental results using the PAIDE system with 
two of the NAS Parallel Benchmarks indicates that the 
PAIDE achieves its original goal of minimal overhead.  In 
particular, the overhead for the PAIDE was less than 
3.4% for CG and less than 1% for parallel IS. This is 
significant and it indicates that the PAIDE does not 
perturb the performance data, and is appropriate for 
parallel and distributed applications that take a long time 
to execute. Some works for the PAIDE system will be 
further done, such as the support for C++ and HPF 
programs, etc. 
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